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Abstract

Commonly, expositions of twinning theory combine at least two di�erent kinds of observations: measurements of

macroscopic deformation and those made using X-rays. I believe that there is some merit in considering the latter

separately because, often, the two kinds do not mesh very well. Here, my aim is to elaborate this and to improve the

twinning theory based on a theory of X-ray observations to be described. Ó 2001 Elsevier Science Ltd. All rights re-

served.

Keywords: Continuum theory of crystal defects; Twinning theory; Crystal multilattices

1. Introduction

The research of Zanzotto (1992) made clear that, for many crystals, the commonly used Cauchy±Born
rule for relating changes in lattice vectors to macroscopic deformation is not consistent with observations of
the changes associated with twinning and phase transitions. Brie¯y, this is the assumption that the mac-
roscopic deformation gradient, applied as a linear transformation to lattice vectors before deformation,
gives a possible set of lattice vectors in the deformed crystal. By arguments that I ®nd convincing, he
concludes that, when it is not, elasticity theory is inadequate to deal with these phenomena. He does note
that the assumption does seem to be reliable for some kinds of crystals, the Bravais lattices and shape-
memory alloys, for which elasticity theory has been used successfully to describe such phenomena. For
other kinds of crystals, the assumption sometimes applies, but often fails, and there seems to be no clear
pattern in this. When it fails, we have no reliable theory for relating deformation to the lattice vectors and
shifts describing the crystal structures, commonly observed using X-ray methods. I thought it desirable
to construct some type of theory to describe at least some such observations. To this end, I proposed
(Ericksen, 1997) a continuun theory of crystal multilattices 1 dealing only with the X-ray observations,
hereafter called X-ray theory. Certainly, it is important to deal with deformations, but I do not know how
to do so. Experts do ®nd this very di�cult. In my presentation of this theory, I included some brief
comments about related twinning theory, introducing an idea not used before in the literature, as far as
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I know. Here, my purpose is to discuss this kind of theory in some detail, including an illustrative example,
an analysis of one of the ®ve twinning modes observed in orthorhombic a-uranium, which involves some
subtleties. Also, a partial analysis of another twin in this material is presented to illustrate other points.
Generally, my aim is to link better such calculations to the theory of constitutive equations. Twinning
analyses in the X-ray theory are somewhat di�erent from what you are likely to ®nd in expositions of
twinning theory, so I will elaborate this.

Another of my aims is to adapt to the X-ray theory, the kinds of analyses, based on elasticity theory, that
have been used to describe some microstructures involving twinning. Conceptually, these have relied on
notions of reference con®gurations and deformations, concepts which are not involved in the X-ray theory.
Also, to relate calculations to X-ray observations, the Cauchy±Born rule is used, and the X-ray theory can
be used for cases where it fails or is not relevant, as is the case for some studies of growth twins. Math-
ematically, such use of elasticity theory involves considering minimizing sequences for energy functionals
that do not converge to minimizers, but have useful limits which can be described, using the theory of the
probability distributions known as the Young measures. The literature on applications of this to elasticity
theory has grown rather large. For readers not familiar with it, I suggest starting with the paper by Ball and
James (1992), which covers the basic mathematical theory, some applications and a number of relevant
references. Actually, it might be useful to reconsider how the mathematical theory applies to functions
de®ned on bounded domains, to provide a better basis for most calculations of this kind. Some newer ideas
and references are covered by Bhattacharya et al. (1994). I will introduce an alternative to the formulation
used for elasticity theory which generalizes more easily to the X-ray theory, then brie¯y indicate how to do
the generalization. For this part to be comprehensible, one needs to have some understanding of the basic
mathematical theory, and I will not rehash this.

Particularly, in Section 6, I have made a serious e�ort to understand and explain common practices that
I have found confusing and seem likely to be confusing to other theorists. In this, I could not avoid making
some guesses, so bear this in mind, in assessing my opinions about this.

2. X-ray theory

Here, I will give a brief summary of my X-ray theory (Ericksen, 1997), restricting the discussion of this to
monatomic crystals for simplicity. The con®gurations are described as n lattices, where n is any positive
integer: constitutive equations treat n as ®xed, the con®gurations as variable. An n lattice consists of n
identical lattices, translated in di�erent ways relative to each other. The usual idea is that a lattice describes
a set of ``positions'' of identical atoms, representable in the form:

naea � const:; na 2 Z; �2:1�
where the (three) vectors ea and lattice vectors are a set of linearly independent vectors. The quotation
marks indicate that, physically, ``position'' really means a point describing some averaged location of an
atom. For various purposes, it is also important to introduce the reciprocal lattice vectors (dual basis) ea,
satisfying

ea 
 ea � ea 
 ea � 1; ea � eb � da
b: �2:2�

For an n lattice, one also needs to describe how the di�erent lattices are translated relative to some point in
space. With the usual ideas of invariance under translations associated with Galilean invariance, there are
some advantages in taking the point to be some position in one of the lattices, using what Pitteri (1985a) has
called shifts, a set of vectors denoted by

pi; i � 1; . . . ; m � nÿ 1: �2:3�
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For any con®guration, there are in®nitely many ways of choosing these vectors. Commonly, estimates of
these are obtained using X-rays, probed over the width of an X-ray beam, wide enough to include a very
large number of atoms. For this reason, observations made using electron microscopes reveal more about
atomic arrangements near defects which might even be invisible in X-ray observations, for example. This
motivated me to consider a continuum theory, treating the indicated vectors as vector ®elds, functions of
position in space. This is what I call the X-ray theory, which is an equilibrium theory. My interest is in
providing some theory for certain phenomena outside the range of validity of elasticity theory. Included in
this are the discontinuities associated with twinning in some crystals, such as are documented by Zanzotto
(1992), changes associated with phase transitions in some crystals, and growth twins. For such phenomena,
I believe that it is reasonable to accept some assumptions I made in most cases. There are exceptions for
some growth twins, noted in Section 6. I excluded continuous distributions of dislocations, leading to the
conclusion that one has an analog of the inverse of the deformation gradient in elasticity theory. That is,
there are scalar functions va such that

ea � rva: �2:4�
This leaves open the possibility of analyzing isolated dislocations, similar to the way this is done in elasticity
theory. Generally, twinning involves ®nite jumps in ea, ea and pi across some surface. After pondering
observations and common practices, I did and still do consider it to be reasonable to assume that it is
possible to choose lattice vectors on the two sides, so that the Burger's vector vanishes for all Burger's
circuits intersecting the discontinuity surface, not enclosing other defects, most likely to be dislocation lines.
This implies that va can be taken to be continuous across the discontinuity surface. This is an analog of the
usual assumption of continuity of the displacement in elasticity theory for twins. Associated with this is the
usual kinematic condition of compatibility, which can be put in the form

�ea � �1ÿ n
 a�ea; �2:5�
where n is the unit normal to the discontinuity surface and a is an amplitude vector. Also, �ea and ea here
represent limiting values from the two sides. This will play an important role in later discussions. For twins
in unstressed crystals, it is the common understanding that the volume of a unit cell is the same on both
sides. Also, for most if not all mechanical twins and some growth twins, the experience is consistent with the
assumption that �ea and ea can be selected so as to have the same orientation. With both of these as-
sumptions,

a � n � 0; �2:6�
and Eq. (2.5) is equivalent to

�ea � �1� a
 n�ea: �2:7�
Another possibility will be described in Section 6. I expect that Eq. (2.5) also applies to twins in samples
bearing small loads, which are often associated with metastable equilibria. Then, Eq. (2.6) might well fail.
No doubt, Eq. (2.7) looks more familiar to those with some experience in the analysis of mechanical twins.
There, the indicated linear transformations are often associated with the macroscopic deformation gradi-
ent, a simple shear, and this is, e�ectively, an application of the Cauchy±Born rule. Similarly, there are
conditions on the shifts associated with twins. I will not discuss these in general, but will treat a special case
later, in an example, discuss it a bit more, in Section 6.

Typically, mechanical twins do involve a simple shearing deformation like this, in unloaded specimens,
with a deformation gradient of the form.

F � 1� b
 n; �2:8�
where b is perpendicular to n. To compare this with Eq. (2.7), take as a reference con®guration with
the lattice vectors ea. Commonly, X-ray observations provide in®nitely many possibilities for satisfying
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Eq. (2.7), for a given twin and choice of ea. When the Cauchy±Born rule does apply, one of these satis®es
a � b and, usually, in Bravais lattices, it is the one with the smallest value of jaj. So, this is a guess often
made by workers, to get a value of F from X-ray observations, although they use other ideas for multi-
lattices. When the Cauchy±Born rule fails, none of the possibilities indicated by Eq. (2.7) agrees with Eq.
(2.8).

Obviously, one really needs both X-ray observations and measurements of macroscopic deformation to
check this. Later, we will consider an illustrative example. To get something like the Cauchy±Born rule,
workers often use what Zanzotto (1992) calls sublattices. Brie¯y, this involves using larger lattice vectors,
e�ectively ignoring some sets of atoms in the real lattices. Empirically, it seems that such sublattices exist for
all mechanical twins, when the Cauchy±Born rule fails to apply, although I do not know of a good physical
reason for this. In Section 6, I will mention variations on twinning equations used by workers to allow for
this. Obviously, it is desirable to test the aforementioned assumptions by analyzing observed twins for
which there is some reason to suspect that they might not apply. It seemed to me possible that the examples
to be discussed might be of this kind. We will see how analyses of these work out. It is an old di�culty in
twinning theory that, often, theoretically possible twins are not observed, and I have no new ideas for trying
to remedy this. It is tricky, since we cannot know what might be observed in the future.

One does need to be able to account for mass densities, and I made a rather obvious assumption
(Ericksen, 1997) about this, to be mentioned later. Also, I introduced a constitutive function for u, the
Helmholtz free energy per unit mass, of the form

u � û�ea; pi; h�; �2:9�
where h denotes absolute temperature. Given Eq. (2.4), it is really better to use one of the form

u � ^̂u�ea; pi; h�: �2:10�
Obviously, it is a matter of making a change of variables to get one from the other, and I will not belabor

converting the analyses I gave to put them in terms of ^̂u.
For the analysis of twinning, in particular, one needs to make some assumptions about the invariance

group for û or ^̂u and, unfortunately, this is a complicated business, only partly because one is dealing with
n lattices, where n can be any positive integer. It is a bit easier to discuss this for û, which better ®ts
conventional thinking, and to ignore the dependence on h. Certainly, one needs invariance under ®nite
rotations,

û�Rea;Rpi� � û�ea; pi�; R 2 SO�3�; �2:11�
implying that these transformations must map the domain of û onto itself. Physically, û should be at least
di�erentiable, to be able to calculate the Cauchy and con®gurational stresses, and entropy. This is not likely
to be true, if e1 � e2 ^ e3 � 0 or 1. As the domain of û must be a connected set, we must then have,
throughout its domain,

either e1 � e2 ^ e3 > 0 or e1 � e2 ^ e3 < 0: �2:12�
So, for example, any lattice described by ea can also be described by ÿea, but the two possibilities cannot
both be in the domain of û. With growth twins, there is real possibility of having enantiomorphic con-
®guarations on the two sides. There is then the possibility that two di�erent ``mirror image'' constitutive
equations are appropriate. This does not necessarily require that their lattice vectors be oppositely oriented,
but it allows for this possibility, in constitutive theory. I interpret the di�erent constitutive equations to
mean that it is impossible to remove such twins by applying loads. This ®ts the experience with Brazil twins
in quartz, for example. Similarly, one needs to exclude the values of pi, which let two di�erent atoms occupy
the same position. This puts some conditions on the topology of the domain that are not encountered in the
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theory of Bravais lattices (1-lattices). I will ignore these, as they are not needed for matters to be discussed
here.

Another complication not encountered in Bravais lattices is one that I glossed (Ericksen, 1997). The
domain is likely to include nonessential descriptions in the terminology of Pitteri (1998) and Pitteri and
Zanzotto (2000, Chapter 4). Brie¯y, these are the values of ea and pi for an n lattice describing a con®g-
uration which can also be described as an n0 lattice, with n0 < n. He gave one characterization of these and,
more recently, I gave (Ericksen, 1997) a di�erent one. In some cases of interest, but not all, one can pick
domains excluding these. Otherwise, it is still not clear how best to deal with those occurring in the domains
of functions, so, I will not face up to this di�culty. As candidates for transformations to be included in the
invariance group for a function û, we get some in®nite discrete ones, which do form groups. For the
lattices, ea and ~ea describe the same lattice provided

~ea � mb
aeb; m � kmb

ak 2 G; �2:13�
the group of unimodular matrices of integers, often denoted by GL�3; Z� or a similar notation. Of course,
Eq. (2.12) excludes the possibilities with det m � ÿ1 although, as I noted (Ericksen, 1997), one could
combine these with improper orthogonal transformations. In these and other matrices, my convention is
that the lower index always labels rows. To de®ne shifts, we picked, an atom in one of the lattices an an
origin, and numbered the lattices in some manner. Picking another such atom and renumbering gives
transformations of the form

pi ! ~pi � aj
i pj � nahea; nai 2 Z; �2:14�

where the matrices a � ka j
ik can be interpreted as forming an o�beat representation of the permutation

group on n objects. Pitteri (1985a) described a set of generators which, with my convention, consists of

�a� matrices obtained by replacing column in the unit matrix by entries all equal to ÿ 1 and
�b� matrices obtained by interchanging two columns in the unit matrix;

�
�2:15�

for essential descriptions. He uses a di�erent convention, making his matrices transposes of mine. As I see
it, these transformations also apply to those nonessential descriptions, but one should also explore addi-
tional implications of their being describable as n0 lattices. As I discussed (Ericksen, 1999) in some detail, it
su�ces to use a proper subset of these, for monoatomic crystals, except for some smaller values of n. For
polyatomic crystals, additional restrictions are imposed on the a0s.

Now, for Bravais lattices, it has been very useful to consider as a domain one of the neighborhoods of
Pitteri (1984, 1985a) because, e�ectively, these pick out ®nite subgroups of the in®nite discrete groups,
which map the neighborhood onto itself, in a nice way, more traditional invariance groups. It is possible for
these neighborhoods to be unbounded with respect to applying uniform dilatations to lattice vectors, but
most analyses done do not use this ¯exibility. Unfortunately, there are cases where the con®gurations of
interest cannot be in the same neighborhood, for example, the very common twins in cubic and hexagonal
crystals, although it is physically reasonable to take the domains of interest to be bounded for these. So,
there is room for some new ideas, to deal with such exceptions, preferably without requiring the use of
in®nite discrete groups.

Pitteri (1985a) generalized the basic theory of neighborhoods from his earlier version (Pitteri, 1984) for
Bravais lattices, but only when they are centered at essential descriptions. Then, the relevant discrete group
reduces to a ®nite group, the lattice group of the center. The lattice group for a nonessential description,
described in the same way, is never unique. Elements of lattice groups are sets of integers, of the form

�m; a; q�; q � kqa
i k 2 Z; �2:16�

where the matrices m and a are of the form described above, this set being associated with the equations
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Qea � mb
aeb; Q 2 O�3�;

Qpi � a j
i pj � qq

i ea:

�
�2:17�

One uses these, restricted to be consistent with Eq. (2.12), evaluated at the lattice vectors and shifts de-
scribing the con®guration chosen as center. It turned out that crystallographers had not worked on these
groups, hampering development of this theory. However, progress is being made in understanding them.
For example, Pitteri and Zanzotto (1998) constructed a very nice example showing that these can be used to
distinguish subtle di�erences in symmetry that are not by the commonly used space groups and site-
symmetry groups. Generally, they can distinguish di�erences in symmetry missed by the latter groups. Also,
Pitteri and Zanzotto (2000, Chapter 4) present calculations of these groups for some special cases. I
characterized (Ericksen, 1999) the groups for two lattices and three lattices with lattice vectors of most of
the lower symmetry triclinic and monoclinic types.

Adeleke (1999) characterized these for general n lattices with body-centered orthorhombic lattice vec-
tors. The latter two papers explain how the as are a representation of the permutation group on n objects.
Also, Parry (1998) treated some low-dimensional lattice groups. I ®nd that it eases some such analyses, if
one replaces Eq. (2.17) by the equivalent

pa
i mb

a � a j
i p

b
j � qb

i ; �2:18�
where

pi � pa
i ea ) pa

i � pi � ea: �2:19�
This also better ®ts formulation (2.10), with pi replaced by pa

i . As yet, we know very little about what kinds
of phase-transitions, twinning, etc. can be analyzed, using these neighborhoods, for multilattices. Also,
there is need to understand how to use neighborhoods centered at nonessential descriptions, in a similar
way. Generally, it is not hard to calculate the lattice group for a particular con®guration, given an essential
description, as I will do for an example discussed later.

I think it obvious that the X-ray theory is still in a very rudimentary state and it is a complicated theory.
However, tackling special problems with newer theories usually results in gains in our understanding, and I
think it is now feasible to do some of this.

3. An example

In attempting to analyze twin patterns which are or might be observed in a particular material, a good
®rst step is to analyze a single twin that has been observed in it, with constant lattice vectors and shifts on
each side. One can ®nd lists of observed twins and other general information on them in standard references
such as Barrett and Massalski (1966), Hall (1954), Kelly and Groves (1951), Klassen-Nekliudova (1964)
and Reed-Hill et al. (1964). Also, there is a fairly recent review of work on deformation twinning, con-
taining much information and numerous references, by Christian and Mahajan (1995). Bear in mind that
observations of new kinds of twins occur from time to time, so views of the subject and tables can and do
change, as a result of this. Brie¯y, deformation twins are produced by suitably loading a crystal, then
removing the loads. Transformation twins do not involve loading, occurring naturally in unstressed crystals
as a result of various phase transitions involving a change of symmetry. Intuitively, producing deformation
twins treats crystals rather roughly, more so than the treatment producing transformation twins, for ex-
ample. From this, one might guess that other kinds of defects are more likely to accompany deformation
twins. However, twinning theory not accounting for this has been quite successful. Some information listed
in such tables is not really relevant to the X-ray theory, referring to observations of macroscopic defor-
mation. For an example, I will pick a material for which Zanzotto (1992) concluded that elasticity theory is
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inadequate to describe all observed twins. Conceivably, this might suggest that my assumptions do not all
apply. The materials he implicates include some hexagonal close-packed crystals. The lattice group for these
is maximal, which implies that it is impossible for the two con®gurations involved in a twin to be in the
same Pitteri neighborhood. In this respect, the lower symmetry (orthorhombic) a-uranium he analyzes
seems to be more promising, these twins being produced by stress, induced mechanically or thermally. This
material is also interesting, because a variety of rather unusual twins are observed in it. It is described as a
(monatomic) four lattice by Barrett and Massalski (1966, p. 170), a description used by all workers, as far as
I know. The lattice vectors are chosen to be of the form

e1 � ai; e2 � bj; e3 � ck;
e1 � i=a; e2 � j=b; e3 � k=c;

�
�3:1�

where the vectors i, j and k are orthonormal, and a; b; c are constants, with

0 < a < b < c: �3:2�
Later, I will say more about relevant values of these and the shifts. Look at the table given by Barrett and
Massalski (1966, p. 415), for example and you get a rather standard way of listing twinning informa-
tion. Some tables include additional entries, use slightly di�erent notations, etc. For a-uranium, they list
®ve twinning modes. The ®rst, which is also the mode most frequently observed, is described as

Twinning Twinning Second undisorted Direction Shear
plane;K1 direction; g1 plane;K2 g2

f13 0g h3�10i f1�10g h110i 0:229

8<: �3:3�

The labels K1, g1, etc. are standard. I will follow the common practice of using the K1 entry to label twinning
modes, so these are the f1 30g twins, or it is the f130g mode. The numbers involved are crystallographic
indices of the directions mentioned; one can use the numbers as they stand, or use crystallographically
equivalent sets of directions. In some tables occurring in the literature, using such numbers as they stand
can lead to error. At least check that they imply that K1 and g1 as well as K2 and g2 are orthogonal, as they
must be. Later, I will mention cases in point. The description of twinning elements by Barret and Massalski
(1966, p. 411) should make fairly clear the interpretation of these entries, at least for mechanical twins, but I
will raise a question about the interpretation of g1. Here, only the ®rst and, sometimes, the second entries
are relevant to the X-ray theory, the others referring to observations of macroscopic deformation. Actually,
workers exercise ingenuity, intrying to get best estimates of all entries. I do not think it is worth getting
into a lengthy discussion of this. So, allow for the fact that my remarks about such matters are somewhat
simplistic. With the obvious di�erence in how the planes are transformed some workers prefer to use
di�erent names for the planes, calling the latter composition planes.

To illustrate some ideas in a simpler way I will make a ``lucky guess'' that akg1 (a is parallel to g1), the
vector with g1 as components relative to ea. Workers familiar with twinning analyses might spot that this is
not just a guess. Later, I will explain this. A more thoughtful treatment is described in Section 6. Also, I will
gloss some subtleties related to twinning theory, discussed in Section 6, that are not important here. In
terms of the vectors a and n, the ®rst two entries give

nke1 � 3e2; ak3e1 ÿ e2; �3:4�
or a pair of directions crystallographically equivalent to these. Ignoring the remaining entries, we have

S def
x � 1� a
 n � 1� a�3e1 ÿ e2� 
 �e1 � 3e2�; �3:5�

where a is some scalar. Here, the ea are lattice vectors on one side of the twin. Subscript on S indicates that I
interpret this as a shear to be determined by the X-ray theory and measurements only, although I will
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compare it with the value of the shear deformation. Here, SX represents a one parameter family of values,
parameterized by a.

To qualify as a twin in an unstressed material, it is generally agreed that some orthogonal transformation
applied to the con®guration on one side gives the con®guration on the other. For most observed mechanical
twins, this is a 180° rotation with n as axis, associated what are called type I or rotation twins. 2 For the
occasional exception, it is most often a 180° rotation with a as axis, associated with what are called type II
or re¯ection twins. For a long time, experts were not convinced that other types of mechanical twins exist in
nature. However, recent observations, to be discussed later, seem to establish that there are. Simply, I do
not know how well these are accepted by experts. For a-uranium, the types of observed twins are mentioned
by Christian and Mahajan (1995, Section 2.8). The twin at hand is compound, meaning that it can be
analyzed as either type I or type II. It will be analyzed as type I, using

R � ÿ1� 2n
 n;
n � �e1 � 3e2�= e1 � 3e2j j:

�
�3:6�

Now, from this, the set

êa � Rea; p̂i � Rpi �3:7�
is a possible set of lattice vectors and shifts on the other side. From Eq. (2.7), the vectors indicated there by
�ea are also a possible set of lattice vectors on the same side. Using Eq. (2.13) to put this together, we get the
twinning equation

�ea � SX ea � �1� a�3e1 ÿ e2� 
 �e1 � 3e2��ea

� mb
aêb � mb

aReb; �3:8�
with R given by Eq. (3.6). This is to be solved for possible values of the scalar a and m 2 G. This will look
familiar to those dealing with twins in Bravais lattices and shape memory alloys, for which the Cauchy±
Born rule applies, according to Zanzotto (1992). Then, a possible value of SX is taken to be the macroscopic
deformation gradient F, as described earlier. However, Eq. (3.8) is based on a di�erent concept and,
generally, I believe that it applies when the Cauchy±Born rule fails. To compare with the macroscopic shear
deformation, it is convenient to proceed as follows: For any value of a, we can determine a matrix l�a� such
that Eq. (3.8) holds, with m replaced by l. This is just a description of (mixed) components of RSX in the
lattice vector basis. A calculation gives

l�a� �
1ÿ 3l l 0
6ÿ 9l 3lÿ 1 0

0 0 ÿ1














; �3:9�

where

l � 6a2=�9a2 � b2� � a: �3:10�
It is easy to check that

det l � 1; l2 � 1: �3:11�
Clearly, we will have l 2 G if and only if l is an integer, call it m. So, Eq. (3.8) will be satis®ed, for any
integer m, if we take

2 One should be wary of the fact, pointed out by Zanzotto (1988), that inequivalent de®nitions of the types occur in the literature,

and it is sometimes hard to know which a writer has in mind, if you do not know some common practices, explained in Section 6. I use

a slight generalization of the one Zanzotta selects, covering multilattices.

974 J.L. Ericksen / International Journal of Solids and Structures 38 (2001) 967±995



a � mÿ 6a2=�9a2 � b2�: �3:12�
This type of indeterminacy is familiar to those who do twinning analyses, using X-ray data, to estimate F,
assuming that the Cauchy±Born rule might apply and, soon, I will explain this. One then cannot really
determine the macroscopic deformation gradient uniquely from such X-ray observations. To try to do so, I
will use the guess commonly used for Bravais lattices, minimizing the shear magnitude sX , which is given by

sX �m� � jak3e1 ÿ e2ke1 � e2j
� jm�9a2 � b2� ÿ 6a2j=ab �3:13�

by a routine calculation. Here, it might be reasonable to consider the two smallest, as they give shears in
opposite directions, they are

sX �0� � 6a=b �a < 0�; �3:14�

sX �1� � b=a� 3a=b �a > 0�: �3:15�
Now, from the description of g2 in Eq. (3.3), one can calculate a similar formula for s the magnitude of the
macroscopic shear deformation. This gives a (known) formula

s � jb=aÿ 3a=bj � sX �1=2�: �3:16�
This does not agree with Eq. (3.3) for any integer m For our a-uranium, data cited by Barrett and Massalski
(1966, p. 170) give

b=a � 2:056; �a > 0�; �3:17�
yielding the value s � 0:299 noted in Eq. (3.3). For this ratio, Eq. (3.14) gives 2.92, much too large and in
the wrong direction. With Eq. (3.15), we get the right direction, but with the value 3.515 much too large.
Certainly, one cannot attribute these large discrepancies to experimental errors. What we are seeing seems
to be clear evidence of a failure of the Cauchy±Born rule, but we shall see that it is not.

This analysis applies to any n lattice, at least when the lattice vectors are associated with an essential
description. From the four-lattice description of a-uranium presented by Barrett and Massalski (1966,
p. 170), I read o� shifts, obtained by using as origin the point they label as 0y1=4; y � 0:015� 0:005, getting

p1 � �e1 � e2�=2;
p2 � ÿ2ye2 � e3=2;
p3 � p2 � �e1 � e2�=2:

8<: �3:18�

This is essentially the same as an example I presented (Ericksen, 1998, Eq. (82)), of a nonessential four-
lattice description. It can also be described as a two-lattice, with lattice vectors describing a base-centered
orthorhombic lattice. The routines presented there give these as

��e1 � e2�=2; e2; e3�; �3:19�
and one shift, which can be taken as

p2 � ÿ2ye2 � e3=2: �3:20�
However, analyses to follow work out more neatly if one uses the equivalent set

~e1 � �e1 ÿ e2�=2;
~e2 � �e1 � e2�=2;
~e3 � e3;

8<: �3:21�

a commonly used description of a base-centered orthorhombic lattice, along with an equivalent shift, given
by
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p � p2 � ~e2 � 2y~e1 � �1ÿ 2y�~e2 � ~e3=2: �3:22�
Certainly, experts know that the con®guration can be described as a two-lattice, as is clear from the

discussion of Christian and Mahajan (1995, Section 2.8), for example, and they compensate for this by
allowing half integers in Eq. (3.8). As is noted by Pitteri and Zanzotto (2000, Chapter 4), point and space
groups calculated using nonessential descriptions are sometimes only proper subgroups of those obtained
using essential descriptions. Here, the two descriptions give the same point groups and space groups. This
means that, for most and perhaps all conventional analyses, it really does not matter which description one
uses. However, for an analysis to follow, the di�erence is important. Consider Eq. (3.16), describing the
macroscopic deformation. Changing variables to replace the old lattice vectors by the new, we get, with the
shear S described by Eq. (3.16),

S~e1 � ÿR~e1 ÿ R~e2;
S~e2 � R~e2;
S~e3 � ÿR~e3;

8<: �3:23�

and the coe�cients on the right now form a unimodular matrix of integers, given by

m1 �
ÿ1 ÿ1 0
0 1 0
0 0 ÿ1














 �3:24�

with

det m1 � 1; m2
1 � 1: �3:25�

The e�ect is to allow half integers as well as integers in Eq. (3.13) and minimizing sX in this larger set
gives S, which agrees with measurements of the deformation gradient. With the nonessential description, we
thus get the poor estimate of minimum shear, and an apparent failure of the Cauchy±Born rule, using the
same X-ray observations. With the essential description, the Cauchy±Born rule and minimum shear hy-
pothesis do apply. As was mentioned earlier, workers avoid this trap, by allowing half integers. As a matter
of taste, I do not like this dodge, but it works, for this calculation. For the linear transformation S, it does
not matter what basis we use to describe it. So,

the Cauchyÿ Born rule does apply; with the new choice of lattice vectors and shifts

given by Eqs: �3:21� and �3:22�; providing an essential description: �3:26�
A calculation gives

e1 � 3e2 � 2~e2 ÿ ~e1;
3e1 ÿ e2 � 2�2~e1 � ~e2�

(
�3:27�

and

S � 1� 2�b2 ÿ 3a2��2~e1 � ~e2� 
 �2~e2 ÿ ~e1�=�9a2 � b2��: �3:28�
With the new choice of lattice vectors, the table corresponding to Eq. (3.3) becomes

Twinning Twinning Second Undistorted Direction Shear
plane;K1 direction; g1 plane;K2 g2

f�120g h2 10i f1 00g h010i 0:299

8<: �3:29�

As in the previous calculation, the X-ray theory involves an in®nite number of shears, now including the
one describing the macroscopic shear. As is familiar to experts, this occurs because of the existence of lattice
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invariant shears SL, meaning shears that map one set of lattice vectors to another one for the same lattice.
For this reason, they are invisible, in X-ray observations. Here, the important ones are of the form

SL � 1� m�3e1 ÿ e2� 
 �e1 � 3e2�; �3:30�
for the old set of lattice vectors, where m is any integer. For the new set, a look at Eq. (3.27) gives

S0L � 1� m0�2~e1 � ~e2� 
 �2~e2 ÿ ~e1�; m0 � 2m; �3:31�
where m0 is any integer, justifying the rather common practice of using integers and half integers in Eq.
(3.13), as workers do and as I did in Eq. (3.16).

For a satisfactory analysis of these twins, û should be invariant under ®nite rotations and the subgroup
of the lattice group for ~ea and p which is consistent with Eq. (2.12), in particular. The complete lattice group
is of order eight, involving all of the orthogonal transformations in the point group for the lattice vectors
indicated in Eq. (3.21). Elements corresponding to a central inversion and 180° rotations with axes e2 and e3

are, respectively,

ÿ1 0 0
0 ÿ1 0
0 0 ÿ1














;ÿ1; �0; 0; 0�

8<:
9=;; �3:32a�

ÿ0 ÿ1 0
ÿ1 0 0
0 0 ÿ1














; 1; �ÿ1;ÿ1;ÿ1�

8<:
9=;; �3:32b�

ÿ1 0 0
0 ÿ1 0
0 0 1














;ÿ1; �0; 0; 1�

8<:
9=;; �3:32c�

where, interpreted as in Eq. (2.16), these serve as generators of the complete lattice group for this con-
®guration, and the ®rst can be deleted in considering the invariance group for û. To properly cover the
twins considered, we also need to have û invariant under the m1 given by Eq. (3.24), hence under the group
generated by it and the two ms in Eqs. (3.32b) and (3.32c). For these twins to be included in a Pitteri
neighborhood, it is necessary that this be a ®nite group. This can be true only if the three ms are included in
the lattice group of some Bravais lattice. If so, the lattice vectors for the latter, denoted by ca, are possible
candidates for the center of a Pitteri neighborhood. So, one looks at the three equations of the form

Rca � mb
acb; �3:33�

for the three indicated ms, the Rs being some unknown rotations, the ca also being unknowns. As all satisfy
det m � 1; m2 � 1, these are all 180� rotations, if Eq. (3.33) can be satis®ed. Analyzing this, one ®nds that
the ca must satisfy the following conditions:

c1 � c3 � c2 � c3 � 0;
c1j j � c2j j;

2c1 � c2 � ÿjc2j2;

8<: �3:34�

identifying these as commonly used lattice vectors for hexagonal lattices. These should be selected to have
the same orientation as the lattice vectors ~ea. It is easy to determine the three axes of the aforementioned
180° rotations, which are included in the point group for the hexagonal lattice.

With the Rs thus de®ned, one also needs to de®ne a shift �p, for the hexagonal con®guration, trans-
forming so as to match the second and third entries in Eq. (3.32), and to be such as to preserve the in-
variance associated with Eq. (3.24). Also, it is preferable that the description be essential, as we know so
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little about neighborhoods centered at nonessential descriptions. However, for this special situation, one
could deal with this, if it were necessary, but it is not. Represent the shift by

�p � �paca: �3:35�
The requirement that this ®t the lattice group elements (3.32b) and (3.32c) yields

�p1 � �p2 � 1; �p3 � 1=2: �3:36�
The condition to be avoided, that the description be nonessential, is that the shift is equivalent to one with
components all equal to zero or a half. To include a lattice group element involving m1, we need to have

ÿ�p1 � ��p1 � n1;
ÿ�p1 � �p2 � ��p2 � n2;
ÿ�p3 � ��p3 � n3;

8><>: �3:37�

where the na are integers and the same choice of sign must be used in the three entries. Here, I used Eq.
(2.18). For the upper sign, one gets only nonessential descriptions, so we try the lower. The conditions do
not determine the �pa uniquely, leaving room for using some equivalent shifts. Whichever one uses, one gets
an hexagonal close-packed con®guration. I prefer a standard choice,

�p � c1=3� 2c2=3� c3=2: �3:38�
This de®nes the corresponding lattice group element as

ÿ1 ÿ1 0
0 1 0
0 0 ÿ1














;

8<: ÿ 1; �0; 1; 0�
9=;; �3:39�

the complete lattice group for the center being that for an hexagonal close-packed con®guration, as de-
scribed here. This makes it seem likely that the a-uranium con®gurations considered can be included in such
a neighborhood, and I do believe this. I will not try to prove it, but will give a plausibility argument. For
example, experts know that the con®guration can be viewed as a distorted hexagonal one. Frank (1953), an
ingenious person, got results similar to mine, by noticing a similarity between a-uranium and zinc. I got it
by a rather routine calculation and will point out implications of this concerning constitutive theory, as-
suming my belief is correct. I note that, for this analysis, it is at best awkward to use the four-lattice de-
scription. So, this is one of various examples illustrating why it is better to use essential descriptions, unless
there is a very good reason not to do so.

Let us try to construct a path joining the a-uranium con®guration ®rst considered to an hexagonal close-
packed con®guration, with

jc1j � jc2j � j~e1j � j~e2j: �3:40�
On this, we wish to have the lattice groups of all con®gurations on the path be exactly that of the a-uranium
con®guration, except for the center, which will have a larger lattice group, of course. Denote by fa and q the
lattice vectors and shift for any con®guration on the path. We require these to satisfy

jf1j � jf2j � j~e1j; f1 � f3 � f2 � f3 � 0;
q � kf1 � �1ÿ k�f2 � f3=2;

�
�3:41�

where k is a parameter. Also, think of the fa continuous functions k, so, we have a path beginning at
k � 2y � 0:03 and ending at k � 1=3. At the beginning, using the data on a-uranium, one can calculate the
angle determined by ~e1 and ~e2, which is 128°, roughly. So, the angle determined by f1 and f2 needs to
decrease from this value to 120° at the other end, and consider it to decrease monotonically, for simplicity.
A problem could arise if this path contained a nonessential description. Now, Eq. (3.41) describes one at
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k � 1=2, for example, but there are none in the k-interval of interest. Also, Eq. (3.14) is enough to guarantee
that the lattice groups on the path have that at the beginning as a subgroup, at least. A problem could arise
if the path passed through a con®guration with a larger lattice group, but a calculation indicates that this
does not happen. From this, I conclude that such a path is a connected set ®tting the description of an
hexagonal close-packed neighborhood. It is not really necessary to assume that Eq. (3.40) holds, but it
makes the reasoning easier. To proceed, I assume that this inclusion applies. It should be noted that the
paths and center need not be equilibrium con®gurations, because this requires that oû=op � 0 which might
or might not be satis®ed, except at the a-uranium con®guration. Here, I interpret observations as implying
that the latter is an equilibrium con®guration.

In molecular theories of elasticity, workers follow Born (1923), using molecular models to determine û,
solving the indicated equation or the obvious analog for n lattices for the shifts in terms of lattice vectors.
With this, one can reduce û to a function of lattice vectors. Then, the Cauchy±Born rule is used to reduce
this to a function of F. Of course, this is a dubious assumption, which might explain some failures of such
theory. My X-ray theory does without the molecular models and the Cauchy±Born rule but, by design, it
has a very similar structure. The exposition of Born's theory by Stakgold (1950) is clearer and more sound
than the original.

Now, the idea is to assume that the domain of û is such an hexagonal neighborhood, and that û is
invariant under this lattice group and SO(3). Also, it is to have a minimizer at the orthorhombic con®g-
uration described by Eqs. (3.21) and (3.22). Taking the orbit of this under the hexagonal group then gives
three minimizers, called variants. Taking the orbit of these under SO(3) gives three disjoint in®nite sets of
minimizers. As will be familiar to those involved in the theory of microstructures, the number three is
obtained by dividing the order of the hexagonal group by that of the orthorhombic group, by elementary
group theory. For the twins considered above, con®gurations from two di�erent such packages are used.
That is, we apply the lattice group element (3.39) and the rotation R given by Eq. (3.6) to the vectors ~ea and
p to describe its twin, as indicated by

~ea ! �m1�baR~eb; �3:42�
used in Eq. (3.8), and

p! R�ÿp� ~e2�: �3:43�
Note that the procedure picks out one of the in®nitely many equivalent shifts for the twin. In the jargon
used by workers by workers in this area, we have predicted a de®nite kind of shu�ing. Workers use various
kinds of reasoning to estimate shu�ing in various kinds of twins, but may seem not to relate this to any
de®nite theory of constitutive equations, as far as I can tell. As we use only two of the three variants, it
might be possible to use the third to describe more complicated patterns of twins coexisting in one crystal,
but I will not pursue this. While this provides some basis for analyzing patterns of modes of the f130g kind,
it seems most unlikely, on the face of it, that it will be possible to include the other observed twinning modes
in this neighborhood. Later, I will do a partial analysis of one such mode, eliminating any doubt about this,
®nding that it alone cannot be contained in any such neighborhood. Certainly, it will be very di�cult to
construct a theory to deal with all of the modes. However, we have good clues for constructing a theory to
explore the e�ect of small loads on f13 0g twins, for example. I presented (Ericksen, 1997) general equi-
librium equations etc. needed for this. I do not mean to imply that it would be an easy matter to ®nd an
appropriate constitutive function û. So, we have barely scratched the surface, in constructing a theory of
twinning, for this material. Later, we will add a little to this.

Earlier, I described taking akg1 as a guess, but I also mentioned that these twins are compound. This
means that they could also have been treated as type II, with the direction of a determined by the axis of
rotation, something that could be determined from X-ray observations. Now, what is g1? In most expo-
sitions, it is described as representing crystallographic indices of the vector b in Eq. (2.8). I believe that, in
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twinning tables, g1 can always be regarded as representing the axis of rotation for type II and compound
twins. Here, this makes akg1. After reading Section 6, you should understand my reasons for saying this.
For the two prescriptions to agree, one should always have bka, for such twins, and I know of no way to
justify assuming this, theoretically. I do not know of any observations of such mechanical twins indicating
failure of these directions to be parallel, so the assumption that they are seem to have some status, em-
pirically. Theoretically, I do not like using the same name for things that are di�erent, conceptually. I note
that, by itself, the usual description really implies that one cannot determine g1, using only X-ray obser-
vations, as there is no reliable way of relating the latter to deformation. However, workers sometimes do,
by accepting the other description, for this, as is clear from the work of Cahn (1953), for example.

If you look at various twinning tables, you will see three kinds of entries. For some twins, including those
at hand, you will ®nd entries presented as precise integers. This might make you wonder, since they rep-
resent experimental data, which are always subject to some error. For other entries, you will some comment
to the e�ect that ertain entries are irrational. Then, the table might or might not list an approximation to
the entries, using some set of integers. Certainly, workers know about approximating irrational numbers by
rationals, and that, given an experimental estimate of some number associated with theory, one cannot
determine whether the exact value is irrational or rational. To make sense of this, one needs to have some
understanding of how workers make such decisions. In Section 6, I will explain this, as I understand it.

Do not think that this is a typical example of twinning analyses for multilattices. These twins are unusual
in more than one way. As the basic atomic arrangement is not that of a Bravais lattice, it is at least
somewhat exceptional to have the Cauchy±Born rule apply, as was mentioned earlier. Various type I and
type II twins are not compound and this can complicate the analysis of them, as will be illustrated in Section
6. Even for Bravais lattices, there are many twins that cannot be included in any Pitteri neighborhood, as
was mentioned earlier. With all of these nice features, we got a good correlation with the macroscopic
deformation, using an hypothesis which is ad hoc, but is quite successful, for Bravais lattices. For these
twins, elasticity theory might be adequate, but there are the other modes in this material, to which this
theory does not apply, according to Zanzotto (1992). Workers trying to deal with deformation in other
crystals are generally interested in trying to understand how all atoms move in this deformation, and we
produced a particular estimate of shu�ing which workers might accept, as a reasonable guess about this for
these twins. Generally, such workers deal with twins that do not work out as happily, trying various hy-
potheses, with limited success, to correlate X-ray observations with measurements of deformation. I will
not deal with these issues. For those interested in them, I suggest reading the discussion by Christian and
Mahajan (1995) of them, which includes relevant references. In Section 6, I will analyze another mode in a-
uranium, to illustrate some of the kinds of complications that can occur, in dealing with X-ray observations
of twins.

4. Microstructures: elasticity theory

For elasticity theory, the idea that has been used is to ®x some reference con®guration for a crystalline
body, and to consider minimizing sequences for the strain energy, or Helmholtz free energy functional, with
sequences involving twinning deformations. Commonly, the constitutive equation is considered to be re-
stricted to one of the Pitteri (1984) neighborhoods, 3 making this invariant under a ®nite material symmetry
group GM , essentially some point group, and the body is considered to be unloaded. As was mentioned
earlier, there are practical di�culties involved in treating twins that cannot be included in such a neigh-

3 For a slightly more general result and simpler treatment of such neighborhoods for Bravais lattices, cf. Ball and James (1992).

Largely, thermoelasticity theory treats multilattices as Bravais lattices.
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borhood, although one could do so, in principle. Essentially no progress has been made, in analyzing
microstructures in such cases. Also, the energy density is assumed to have a set of minima generated by one
or two, the orbit of these generated by SO(3) and GM . We discussed an analog of this, in our example. Most
of the interest has been in Martensitic transformations, where ®ne-scale twinning microstructures occur
naturally when Austenite transforms to Martensite, in crystals bearing no loads. However, the method can
be used for twins not of such transformation types, at least when they ®t into some neighborhood.

In such endeavors, one is trying to relate theory to observations of twin microstructures. Experimentally,
one then has information concerning the region actually occupied by the twinned specimen, in the Mar-
tensitic phase, the crystallographic orientation and arrangements of the twins, and, often, some information
about the parent untwinned Austenitic specimen, commonly taken as a reference con®guration.

Following the custom in elasticity theory, workers have used material coordinates as independent
variables, so, the twin planes, etc. are described as certain directions in the reference con®guration. To
compare with observations, one then needs to map these to the actual con®guration, to correct the values of
angles between di�erently oriented twin planes, for example. For this, my impression is that what is really
used is the identi®cation of relevant crystallographic directions in the reference and deformed con®gura-
tions provided by the Cauchy±Born rule. Certainly, this hypothesis is used in an important way, to relate X-
ray observations of the crystallographic orientations of twin planes etc. to the calculations, and to select
GM . So, one must do something di�erent when the rule fails to apply, one of my reasons for proposing the
X-ray theory. Commonly considered minimizing sequences involve increasing numbers of such planes with
the distance between parallel planes approaching zero in the limit, the deformation gradient F undergoing
®nite jumps across these. Rather obviously, such values of F will not converge pointwise to a value of F, the
basic reason why a minimizer is not obtained in the limit. However, this is one kind of limit which can be
described, using the theory of Young measures, permitting one to do some useful calculations. With this
theory, one can also describe sequences not only involving twins, such as the Austenite±Martensite in-
terfaces studied by James and Kinderlehrer (1989), for example. Brie¯y, this describes the kind of theory I
would like to adapt to the X-ray theory.

Roughly my idea is to interchange the roles played by the spatial coordinates and material coordinates.
We are interested in comparing calculations with observations of a specimen with microstructure, occu-
pying some region X in space. Instead of ®xing a reference con®guration, ®x X. Again roughly, the idea is to
consider the various material bodies that might be able to be in the observed con®guration. So, instead of
the usual deformation, we consider the inverse, maps of X to other domains, of the form

x � x̂�y�: �4:1�
Here, x and y denote the material and spatial coordinates, or coordinate-free equivalents, respectively.
From the practice used in the previous view, I will borrow the assumption that these functions are included
in W 1;1: it seems to me that arguments favoring this ®t equally well with either of the two procedures. To
use the spatial coordinates as independent variables, write the relevant energy in the form

E �
Z

X
qwdv; �4:2�

putting the constitutive equation for w in the form

w � ŵ�Fÿ1�; �4:3�
where F is again the usual deformation gradient: include a dependence on temperature, if you like. Clearly,
one can take a constitutive equation for the energy per unit reference volume and transform it to get ŵ, or
vice versa. I see no real di�culty in de®ning Pitter's neighborhoods to ®t either formulation, for example.
Roughly, the idea is to consider minimizing E, with the constraint that the total mass M be ®xed. Here,
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M �
Z

X
qdv; �4:4�

q being the mass density. In the customary approach, one takes care of this in a trivial way, by ®xing the
reference mass density q0, and the material region. With the new procedure, we use

q � q0 det Fÿ1; �4:5�
with q0 a ®xed constant. For the spaces and sequences of interest, det Fÿ1, along with Fÿ1 and adjFÿ1 are
weakly continuous, making q weakly continuous, in particular. Brie¯y, this means that, in the limit, one can
use the Young measures to calculate the mass of subregions of X. Or, one can do this, using the weak limits.
There are possible reasons to prefer one to the other, too technical to discuss here. One does need to bear in
mind that sequences considered should respect the condition that M is ®xed. In typical calculations in-
volving only twins, one considers the twinning equation, which can be put in the form

F2 � RF1H � �1� b
 n�F1; R 2 SO�3�; H 2 GM ; b � n � 0; �4:6�
or the equivalent

Fÿ1
2 � Hÿ1Fÿ1

1 RT � Fÿ1
1 �1ÿ b
 n�; b � n � 0; �4:7�

where Fÿ1
1 and Fÿ1

2 are values of Fÿ1 for some pair of minimizers of ŵ; n is the unit normal to a twin plane
and b is the amplitude vector referred to in Ref. (2.8). Of course, using such minimizers picks out a par-
ticular value of M. With the usual understandings about material symmetry and the assumption that the
Cauchy±Born rule applies, this is compatible with the twinning equation used in Eq. (3.8). This gives the
same value of q for the two deformations, so it is easy to deal with Eq. (4.4), in such cases, and not hard for
sequences involving a mix of Austenite and Martensite, for example. Essentially, Eq. (4.6) is the kinematic
condition of compatibility, enabling one to construct piecewise homogeneous maps of the form (4.1), with x

continuous, Fÿ1 undergoing a ®nite jump from Fÿ1 to Fÿ1
2 across planes with normal n, ®tting W 1;1. Perhaps

this is enough to indicate how one can redo calculations in the literature, using this procedure. I will not
argue that, for elasticity theory, this procedure is better than the usual one. It does have one little advantage,
in avoiding transforming descriptions obtained in the reference con®guration. My reason for considering it
is pragmatic, to be able to adapt such techniques to the X-ray theory, and only the latter is suitable for this.

5. Microstructures: X-ray theory

Recall Eq. (2.4) and the fact that, by specializing the choice of lattice vectors a bit, one can arrange that
va is continuous across twin planes. For example, referring to the lattice vectors in Eq. (3.8), we could use as
eÿa and ea those values involved in our example. Mathematically, ea � rva, then, has essentially the same
properties as the Fÿ1 considered before, and there is an analogous twinning equation for these. The other
vectors are shifts pi; i � 1 . . . nÿ 1, for an n lattice. As was the case in our example, these also can su�er
®nite discontinuities across twin planes, which can be analyzed, using Eq. (3.7). If you like, you can adjust
this, using Eq. (2.14) on either side, as we did in our example, there to better ®t the descriptions to a
neighborhood. So, in place of Eq. (4.1), we have an energy density function, the form described in Eq.
(2.10) being more appropriate than is that described in Eq. (2.9).

As an analog of Eq. (4.5), I proposed (Ericksen, 1997) using

q � kj det krvakj; �5:1�
where k is a positive constant, again with essentially the same features as Eq. (4.5). This can exclude some
variable continuous distributions of point defects, for example vacancies, a remark that also applies to the
way mass is accounted for in elasticity theory.
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For va, the obvious analog of what is done in elasticity theory is to consider it to be in the function space
W 1;1. For pi, the ®nite jumps in it are akin to those occurring in rva, ®tting the function function space L1.
For this combination, the general theory of Young measures, etc. is available. In principle, one can then
proceed as before, considering minimizing sequences for

E �
Z

X
q ^̂udv; �5:2�

with

M �
Z

X
qdv �5:3�

held ®xed, as before.
In much of this kind of work in elasticity theory, workers do not really use the function ŵ, merely the

assumption that it has certain minimizers. Using Pitteri's neighborhoods makes it rather easy to generate an
orbit of minimizers that are also in the neighborhood. For the cases involving twins that cannot be included
in one such neighborhood, such as one to be encountered in an example, one could use observations to
estimate some minimizers, take their orbits under SO(3), and possibly use other general ideas of invariance
to enlarge the list. In Section 6, I will suggest a possible strategy for this, which is speculative and only
loosely de®ned, involving two modes in a-uranium. At least tacitly, one then assumes that such minimizers
are in the domain of û. It is then a matter of analyzing microstructures which can be constructed, using
these, and comparing them with observations. This is one way of testing some of the basic ideas used in the
theory, as well as ®nding techniques that should still be useful when the theory becomes better developed.

For the analyses of microstructures that have been done, using elasticity theory, elementary analyses of
twins are prerequisite. For the X-ray theory, the example treated earlier is the only such twinning analysis I
have examined, although another will be treated later. Certainly, workers have done other twinning ana-
lyses, employing similar ideas. However, for me, at least, it is not really trivial to ®t these to the X-ray
theory, so, I need to take a hard look at each one. Given this, I think it better not to include an illustrative
microstructure analysis, but to focus on the more elementary parts of twinning theory.

Finally, I note that the discussion of Christian and Mahajan (1995, Section 3.3) suggests that, when the
element K1 is irrational, as is the case in examples considered later, the ``twin plane'' is not really a plane,
but a kind of saw tooth surface, consisting of very ®nely spaced steps, too ®ne to be observed with X-rays,
at least. In a macroscopic limit, they are reasonably considered as in®nitely ®ne. In such a limit, the crinkled
surfaces should approach the observed plane, but I would expect the direction of the normals to have a
limit described by Young measures. They make somewhat similar remarks about cases where g1 is irra-
tional. I do not fully understand the implications of these thoughts. However, they do suggest that there
might be some interesting microstructure problems, exploring these ideas. Of course, anyone interested in
this should look at all of the ideas concerning this which are presented by the aforementioned authors.

6. General theory of twinning

Here, my aim is to elaborate the more elementary parts of the general theory of twinning, according to
the X-ray theory. This is designed to be compatible with twinning equations used by workers analyzing type
I and type II twins, with information obtained from X-ray observations, as well as some permitting analyses
of more general kinds of twins. As the atoms are arranged in di�erent ways in the two regions separated by
a twin plane, the twin plane direction K1 can be determined, with the inevitable experimental error, using X-
ray methods, it being relatively easy to do so. At least in principle, one can also determine how the atoms
are arranged in both regions although, in practice, this can be di�cult. We have seen some reasons why it is
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better to use essential descriptions, and there are others. However, workers often use nonessential de-
scriptions, so, one might well need to learn how to recognize these and do a translation of the description
much like that done for the example considered earlier. The discussion to follow assumes that essential
descriptions are used.

It is a very common understanding that, for such a pair of arrangements to be called a twin, in an
unloaded crystal, one requirement is that the two arrangements can be related by some orthogonal
transformation Q, not necessarily unique. That is, if ea or ea and pi describe the con®guration on one side,
then,

êa � Qea; ê
a � Qea and p̂i � Qpi �6:1a; b; c�

represent possible values of these vectors on the other side. In some writings, it is not entirely clear that the
authors intend to require an equivalent of Eq. (6.1a), but I am fairly sure that they do. An expert on X-ray
observations informs me that some slight departures from Eq. (6.1a,b,c) are tolerated, in practice, but I will
ignore this. Obviously, that Eq. (6.1a,b,c) holds can be shown to be possible or not, if one knows how the
atoms are arranged. Of course, one can use Eqs. (2.13) and (2.14) to get other descriptions, as we did in
the example. If Q belongs to the point group for the n lattice, so Eq. (2.17) is satis®ed for some values of the
integers involved, the two con®gurations are the same, so this possibility is excluded. However, for n lat-
tices, this does not always exclude the possibility that Q is in the point group for the lattice vectors only.

Another assumption is tacit in twinning tables. That is, they list just one entry for K1, for example,
although, since two di�erent values of ea occur, this direction might have di�erent indices on the two sides.
It is easy to see that, if they match for one choice of these two sets of vectors, one can make them di�erent,
by introducing an equivalent set on one side, leaving that on the other as is. So, this presumes special
choices of these, the obvious possibility being to use pairs related as in Eq. (6.1a,b,c). Conditions obtaining
from this are discussed by Zanzotto (1988, Note 2). I will satisfy the condition in a di�erent way, which is
less restrictive in this respect, but is more restrictive in others. For purposes of discussion, I'll take the
conditions described as minimal requirements for a surface discontinuity to be called a twin. However, at
the end, I will explain why this is not completely consistent with practice.

As might be expected from this, there are, in the literature, di�erent de®nitions of twins and I have not
tried to locate all of these. Those that I have inspected impose Eq. (6.1a,b,c) and some other conditions,
depending on the de®nition. Some and perhaps all exclude some observed con®gurations called twins. To
do common kinds of twinning analyses, one needs more than the minimal requirements noted above.
Roughly, one aim is to assume as little as possible, consistent with this desideratum. Another is to sort out
information which is relevant to the X-ray theory. Here, I will present my view of two classes which seem to
me to be interesting, from this perspective, for what are considered to be unstressed crystals. For obvious
reasons, these emphasize statements that can be veri®ed by X-ray observations alone, although these are
not the only kinds of observations of interest. One class deals with a subset of twins I will call generalized
type I twins, de®ned as follows:

These satisfy Eq: �6:1�; as interpreted above;
K1 is rational;
There is a choice of reciprocal lattice vectors �ea equivalent to êa such that
�e � �1ÿ n
 a�ea;
�ea � ma

bêb � ma
bQeb; m 2 G;

8>>>><>>>>: �6:2a±c�

where n is the unit normal to the twin plane and a is some vector. Here, Eq. (6.2a) just repeats Eq. (2.5),
discussed earlier. The second equation merely mathematizes the assumption of equivalence. As is pointed
out by Zanzotto (1988, Note II), it is always possible to pick lattice vectors so that two are parallel to the
plane, which can help simplify analyses. It follows from these assumptions that
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det k1ÿ a
 nk � 1ÿ a � n � �1; �6:3�
so, with the upper sign

a � n � 0 �6:4�
and with the lower

a � n � 2: �6:5�
I note that Eq. (6.4) includes the possibility that a � 0 which is worth bearing in mind, for growth twins, in
particular Dauphin�e twins in quartz. For these, the simpli®ed model used by James (1987) seems to do quite
well. Unlike the Brazil twins, mentioned in Section 2, these can be removed by mechanical treatments, as
was discovered during World War II and later reported by Thomas and Wooster (1951). For this reason, it
does seem sensible to use the same constitutive equation for both con®gurations.

I interpret assumption (b) as

n � K1=jK1j; K1 � kaea; �6:6�
where ka are relatively prime integers. Then, using Eq. (6.2a), (6.4)±(6.6), we have

ka�e
a � K1 ÿ a � K1n � K1 ÿ a � nK1 � �K1; �6:7�

which is commonly interpreted as acceptable matching of the two values of K1. This does not assume that ea

and �ea are related by an isometry, as was discussed above, although it achieves the matching of indices. For
this, it is not necessary that the ka be integers, and this will be important when we consider the second class.
However, a useful result follows when they are. Suppose that Eq. (6.5) applies. With the ka being relatively
prime integers, there are integers la such that

kala � 1; �6:8�
by elementary number theory. Then,

m̂ � kda
b ÿ 2kblak 2 G; with m̂2 � 1; det m̂ � ÿ1; �6:9�

so we can introduce equivalent reciprocal lattice vectors given by

��ea � m̂aÿb
b e � m̂a

b�1ÿ n
 a�eb; a � n � 2: �6:10�
By a routine calculation, this gives

��ea � �1ÿ n
 �a�ea; �6:11�
where

�a � aÿ 2jK1jlaea ) n � �a � 0: �6:12�
Similarly, if Eq. (6.4) holds, we can transform it in a similar way to have Eq. (6.5) apply, so, the two
versions are equivalent, in this sense, when K1 is rational. This has its limits. There are type II twins which
are in this class, the compound twins. For these, the directions of a or �a can be obtained from X-ray
observations, as was mentioned in Section 3, implying that �a and a are not always physically equivalent.
However, one can still use the idea to transform twinning equations using Eq. (6.4) to equivalents using Eq.
(6.5), or vice versa, which might be helpful, for theoretical studies. It is a common notion that compound
twins can be analyzed as type I and as type II. As was mentioned in footnote 1, this is subject to inter-
pretation, as di�erent de®nitions of the types are in the literature. Properly interpreted, this is true, as far as
the lattice vectors are concerned, as is discussed by Zanzotto (1988). Ponder what this presumes about
shifts, and you should see that this might not always be true for n lattices. However, my experience is that,
in practice, when K1 and g1 are reported as rational, it does mean that they can be analyzed either way and,
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soon, I will explain what I see as the reasons for this. Those accustomed to use the mathematical de®nitions
of rational and irrational numbers should be aware of the fact that this is not exactly what workers in this
area mean by the words. To them, it seems to be like picking a number at random from some interval, when
you do not know in advance that it must be rational. Since the rationals are only a countable subset of the
real numbers, the number picked will be irrational, almost certainly.

In the remainder of this paper, I will consider only cases for which Eq. (6.4) holds. Then, Eq. (6.2a) is
equivalent to

�ea � �1� a
 n�ea; �6:13�
used earlier and, with Eq. (6.1b), we get what looks like the more standard twinning equation

�ea � �mb
aQeb � �1� a
 n�ea; �m � mÿ1: �6:14�

However, when the Cauchy±Born rule fails, this equation can still be used, but it cannot be satis®ed for
a � b, the vector indicated in Eq. (2.8). As will be described later, various workers then use a variation on
Eq. (6.14), with a replaced by b From this view, my procedure is not conventional. Some workers interested
in mechanical twins use arguments about shearing deformations to motivate using Eq. (6.14). To me, this
muddies the water. If the reasoning were sound, Eq. (6.14) should be satis®ed when we take as 1� a
 n the
corresponding deformation gradient and, often, it is not. Also, those deformations are clearly irrelevant to
growth twins. In my way of doing it, those shears need not be considered. So, Eq. (6.14) is not reliable, as an
equation relating to such shears, my reason for interpreting it di�erently. I will try to make clear that the
decisions as to whether twinning elements are rational or irrational are based on predictions obtained from
Eq. (6.14) or some similar equation. As to how well Eq. (6.14), properly interpreted, can do in describing
crystallographic features of twins, I will say that it looks very promising, as a tool for analyzing X-ray
observations. However, I believe that too little has been done to use and test it, so I am trying to pull
together ideas for doing better with this. Understandably, workers concerned with mechanical twins use
various bits of theory to try to master these. I ®nd no fault with this, but it can make it harder to see the
faults and virtues of Eq. (6.14).

Consider the very common cases for which X-ray observations are consistent with a type I description,
with

Q � �R; R � ÿ1� 2n
 n: �6:15�
While analysis of Eq. (6.14) for these is very familiar to those who have done twinning calculations 4, I will
belabor it, to make some points. First, note that, if it is satis®ed with �R; �m� it is also with �ÿR;ÿ�m� al-
though, in general, only one of these will be consistent with Eq. (6.1c). However, for (monatomic) one and
two lattices, both hold when one does, and this includes our example.

Taking the former, consider the equivalent

Hea � �mb
aeb; H def � R�1� a
 n�; �6:16�

and verify that

H2 � 1; det H � 1) �m2 � 1; det �m � 1;
HT n � n) �mb

akb � ka:

(
�6:17�

It seems to be consistent with experience that type I twins always have K1 rational, as is required for Eq.
(6.16) to have any solutions. However, with the inevitable experimental errors, measurements cannot really

4 See Zanzotto (1988, Note 1) and Pitteri (1985b), for example.
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con®rm or contradict this. Thus, necessarily, workers rely on some theory to decide this, using equations
more or less like Eq. (6.16). The conditions on �m require that, for some set of integers la satisfying Eq. (6.9),

�mb
a � ÿdb

a � 2lbka; �6:18�
one point being that X-ray observations of type I twins that are not compound can yield values of ka, but
not of la or of the direction of the vector a. So, here, we can use Eq. (6.4) and regard it as physically
equivalent to Eq. (6.5). Also, if Eq. (6.9) is satis®ed by la, it is also satis®ed by

�la � la � ra; raka � 0; �6:19�
where the r a must be integers, of course. For any choice of these integers, there is a vector a such that Eq.
(6.14) is satis®ed, given by

a � 2�n ÿ jK1jlaea� ) a � n � 0: �6:20�
From Eq. (6.20), it is easy to see that replacing la by �la amounts to adding in a lattice invariant shear, not
detectable in X-ray observations. So, understandably, theory gives us this ambiguous estimate of a. Here,
K1 is the only twinning element used, although one does need more information to determine that a twin is
of type I. Excepting compound twins, I do not see how one could determine other elements from X-ray
observations alone, without adding some hypotheses, for twins in this class: sometimes, workers do add
such hypotheses, to estimate other elements.

Now, how is g1 determined? According to most expositions, it describes the direction of the vector b in
Eq. (2.8). I have come to believe that this is not the only interpretation used, in practice. Try the following
experiment: Select any twinning table, and ignore all entries for which g1 is described as rational. I will deal
with these, later. This will leave you with a much shorter list: if there are none left, try another table. Now,
select one such mode. It is rather likely that this will give no quantitative information for g1. To understand
this, it might help to consider a case history. Cahn (1953) did pioneering work in determining twinning
elements for the modes he observed in a-uranium, and he used some ingenuity in doing so. For example, the
data in Eq. (3.3) are his, but we are ignoring these. However, his observations of f1 12g twins are relevant.
He concluded that these are type I twins, with g1 irrational, but was unable to get quantitative estimates of
it. One might think it a simple matter to measure the direction of b but, in practice, it can be very di�cult
and, for him, it was not feasible to get good data of this kind. To infer that g1 is irrational, he used an
indirect argument. He also observed ``f1�72g'' twins, to be analyzed later and concluded that these two
modes are conjugate, using theory relating to this to draw this conclusion. This gives enough information to
enable you to make a theoretical estimate of g1, if you want to. Thus, these experiments really gave no
information about g1, and this seems not to be an extremely unusual di�culty. Often, if one mode is
observed, its conjugate is not, as seems to be the case for the f130g twins, for example. Thus, one cannot
always use the reasoning based on this, which helped Cahn. So, an answer to the question posed is that g1 is
not always determined and, if it is, it might be by a theoretical estimate, or by some experiment.

The set of integers ra can always be represented parametrically, with two arbitrary integers as param-
eters. In our example, we saw only one. A calculation shows that, had this not been compound, or had we
not noticed this, the shear in Eq. (3.31) should have been replaced by

1� �m0�2~e1 � ~e2� � r~e3� 
 �2~e2 ÿ ~e1�; �6:21�
where r is an arbitrary integer. A calculation shows that r � 0 for the minimum shear. So, in this case, using
this would cancel the error of omission, since it is compound. In other cases involving type I twins, it
certainly is better practice to determine whether the twin is compound. For compound twins, the relevant ra

in Eq. (6.19) reduce to a one parameter family, as in our example.
For the X-ray theory, I believe that Eq. (6.16) is reliable, for locating the possible energy wells associated

with the twins considered. However, only a small number of these are likely to be relevant, physically.
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When it is feasible to include some in a Pitteri neighborhood, it seems to be a good rule to use these.
However, there are many cases for which this is impossible. So, we need, but do not yet have a good al-
ternative, for such cases. Certainly, this is a road block that needs to be surmounted, to develop a good
theory of twin patterns and related microstructures. Later, I will mention a few thoughts about this.

From Eq. (6.20) follows another point, that, for type I twins that are not compound, Eq. (6.2a) is re-
dundant, and observations agree with the view that all of these are generalized type I twins. That is, given a
rational K1 and any set of lattice vectors, Eq. (6.16) can always be satis®ed. For compound twins, when K1

and g1 are determined by X-ray observations, one should con®rm that these are compatible with Eq. (6.2a).
If not, I would conclude that, most likely, there is either some fault in the experiments or in the inter-
pretation of them, but I am biased. Shortly, I will indicate how g1 has been determined using X-ray ob-
servations, for some twins. Most twins are either of type I or can be described as being both of type I and of
type II, so most observed twins are in this class.

Now, I turn to the second class, consisting of what I will call generalized type II twins. In particular, this
covers the less common observations of type II twins with K1 considered to be irrational. By private
communication, Richard James informs me that these are in fact rather common in copper based shape-
memory alloys. As was mentioned before, the Cauchy±Born rule seems to apply to all shape-memory al-
loys. Examples of such twins in other kinds of crystals seem to be rare. To de®ne the class, simply replace
statement (b) in Eq. (6.2a±c) by

�b�0 K1 is irrational: �6:22�
This allows for the possibility of observing examples not of type II and, later, I will mention a recently

discovered example. One does run into rather di�erent problems in analyzing the generalized type II twins,
so there is some reason to put them in a separate category.

Before, I mentioned the interpretation of g1 commonly found in expositions. However, in practice, I ®nd
that another one is also used, which is not obviously equivalent. For the following discussion, I will take at
face value the following statement by a well-known experimentalist, Cahn (1953), as describing how g1 can
be determined, for type II twins:

\For a twin of the second kind; the orientations of parent and twin are related by a rotation of
180� about g1 as axis:"

Certainly, he did use this, in estimating g1 in cases where he could not get good measurements of de-
formation. So, what is to be determined experimentally is this axis, something that can be determined using
X-ray observations, at least in principle. After pondering this and other bits of evidence, I concluded that
the best way to mathematize this is as follows: Proceed by satisfying Eq. (6.14) with

Q � �R; R � ÿ1� 2v
 v; v � a=jaj; �6:23�
this being what I take as a de®nition of type II twins, for the X-ray theory. Except for allowing Q � ÿR, it
is just my interpretation of the quotation above. In this, I also include compound twins. As suggested by the
quotation, I will consider g1 as describing the direction of a. For analyzing the twinning equation, it is
enough to consider the upper sign, as before. I still use Eq. (6.4), which seems to ®t the examples observed.
This di�ers from the previous case in that v and n can be obtained from X-ray observations, with some
experimental errors. Here, it is known 5 that for Eq. (6.14) to be soluble, it is necessary that

v � g1 =jg1j; g1 � taea; �6:24�

5 See Zanzotto (1988), for example.
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where the ta are relatively prime integers. That is, g1 must be rational. With this or some similar guide,
workers will pick the numbers to ®t the data to within the errors in these. It is also known that the equation
does not require K1 to be rational. The practice is to call it irrational unless there is some good reason to
believe that it is rational. The likely reason is that it can be described equally well as a type I twin. Then, the
equations require that both K1 and g1 be rational. I believe that this is the real reason why these elements
are always reported this way, for what are called compound twins. In twinning tables, I have not yet found
an example of a type I twin which is not compound, for which g1 is reported as rational. So, my impression
is that g1 is judged to be irrational for any type I twin that is not compound. This makes it a pretty safe bet
that, if these entries are reported as rational, it implies that the twins can be analyzed as type I or as type II.
As I said, I am interpreting g1 as representing the axis of rotation. As was noted before, from the X-ray
observations alone, there is no reliable theory for determining the vector b in Eq. (2.8). In particular, Eq.
(6.14) is not always satis®ed with a � b. So, if we insist that g1 represents the direction of b, how do workers
conclude that g1 is rational, in these cases? Certainly, workers accept this conclusion and, later, I will
explain how they use a variation on the twinning equation mentioned earlier, to obtain such conclusions.
For these twins, one could assume that bka weaker than a � b which seems to apply to twins observed in a-
uranium, at least, avoiding an inconsistency with the idea that g1 represents the shear direction. I just do not
know whether twins are observed, which violate this assumption. I think that failure of this assumption is a
theoretical possibility, and that it might avoid confusion, if we were to use di�erent notations for the two
interpretations. Of course, this assumption is not really relevant to the X-ray theory, but one interpretation
of g1 is. Until someone proves me wrong, I will assume that the values reported in tables are consistent with
my de®nition. I think it clear that X-ray observations should be used to determine the direction of this axis
and, if only such observations are available, this is how g1 would be determined, in practice. So, it seems to
me to be a good de®nition for the X-ray theory, at least. One could make the condition that bka part of the
de®nition of type II twins. However, experimentalists can only check this approximately, with a margin of
error which is not always so small. Also, this does not make sense for growth twins, or for twins for which it
is not known how they formed. So, I do not like this idea.

From Eq. (6.4), there is some scalar a, such that

a � ag1: �6:25�
Then, one question is whether one can always choose a so that Eq. (6.14) is satis®ed, with Q � R, given by
Eq. (6.23) and a by Eq. (6.25). This reduces to the question of whether one can always ®nd relatively prime
integers sa satisfying

sata � 1 �6:26�
such that

an� 2g1=jg1j2 � 2s�def
2saea �6:27�

is satis®ed for some value of a. It is not hard to show that one can pick lattice vectors, integers ta and a
unit vector n?g1 for which this is impossible. So, one could argue that, hypothetically, there are type II
twins for which Eq. (6.14) is not satis®ed. Of course, with my de®nition of type II, this is impossible. I doubt
that workers using another would accept the possibility that one will encounter a realization of this, in
nature.

This does make it desirable to explore a realistic example. For a-uranium, there are the type II ``f1�72g''
twins, with g1 � h312i, the quotation marks indicating that this is a rational approximation to K1, con-
sidered to be irrational. These data were produced by Cahn (1953), so g1 represents the axis of rotation. The
entries for these two elements agree with Cahn's and listings in tables presented by Hall (1954) and Klassen-
Nekliudova (1964), for example, but the table given by Barrett and Massalski (1966) gives K1 � \f172g"
and the same g1. This is not consistent with the fact that these directions are orthogonal. The table
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presented by Christian and Mahajan (1995) also does this and puts the entries for g1 and g2 in the wrong
places.

Now, it is easy to show that, for this mode, the Cauchy±Born rule fails to apply. Essentially, the basic
idea is what I used to get (3.16). For this, one uses twinning elements describing shear. In Zanzotto (1992), a
list of linear transformations for a-uranium, it is H2 that is associated with this mode. He uses the usual
four-lattice description. Apply this to these lattice vectors and express the result as a linear combination of
the lattice vectors. Do it again, using the essential description. For the Cauchy±Born rule to apply, at least
the latter coe�cients should be integers, forming an element of G. In both cases, one ®nds that they are
rational numbers, but not integers. Actually, various workers consider the twinning equation to be gen-
eralized, allowing such rational numbers as well as integers, this being the variation on the twinning
equation mentioned earlier. Here, the equation is phrased as one involving the shear deformation. This does
not change conclusions about which twinning elements are rational. Essentially, this is a way of describing
the observations supporting the view, mentioned in Section 2, that one can always ®nd a sublattice to which
the Cauchy±Born rule applies. If you perform the above calculations, you should be able to ®nd the su-
blattices for the two descriptions, and determine whether these are the same or di�erent. Here, what I am
doing is unconventional, assuming that Eqs. (6.14) and (6.23) apply, with an unconventional interpretation
of these, despite the failure of the Cauchy±Born rule. I do believe that this is sound. Of course, I concede
that it is possible that someone could ®nd clear evidence that my belief is wrong.

Those interested in constitutive theory need to be aware of this, and try to take it into account. When I
considered this, I concluded that a sensible form of constitutive equations for the energy density is what
I used for the X-ray theory, so, I am interested in learning what can be done with it. My view is that,
if identical atoms somehow exchange positions, this does not a�ect the energy. Of course, using the X-ray
theory does not preclude the common practice of introducing other hypotheses to relate the shear
deformation to lattice vectors and shifts. Simply, I do not see any good way of relating these to a sound
theory of constitutive equations. This is an important and challenging open problem, in need of a good
solution.

I will start by taking the approximation as exact. The indices refer to the four-lattice description de-
scribed in Section 3. Converting them to the essential description used there, I get

K1 � 4~e1 ÿ 3~e2 � 2e3; �6:28a�

g1 � ~e1 � 2~e2 � ~e3; �6:28b�

s � sa~e
a; �6:28c�

with the integers sa satisfying

sata � g1 � s � s1 � 2s2 � s3 � 1: �6:29�
Then, Eq. (6.27) gives three equations for a: one can use the information on the lattice vectors given in
Section 3 to calculate the necessary entries. By routine calculation, I get, as conditions for these to admit a
solution for a,

2�s1 � s2� ÿ s3 � xdef � �12a2 ÿ 4c2�=z; �6:30�
and

s1 ÿ 2s2 � ydef � �3a2 ÿ b2 ÿ 8c2�=z; �6:31�
where

z � 9a2 � b2 � 4c2: �6:32�
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It is easy to pick numbers a; b and c such that x is not very close to an integer, for example, so these
equations are violated. However, using data presented by Barrett and Massalski (1966, p. 170), I calculate
that, approximately,

x � ÿ0:001; y � ÿ1:001; �6:33�
quite close to x � 0, y � ÿ1. So, interpret this as an error in what we took for K1, but take the values of sa

suggested by this, which are

s1 � 4nÿ 1; s2 � 1ÿ 3n; s3 � 2n; �6:34�
where n is any integer, and ta can be read o� from Eq. (6.28b). Again, this would amount to adding lattice
invariant shears of a particular kind, invisible to X-rays, if the starting estimate of K1 had satis®ed the
twinning equation. For any choice of n, one can solve the twinning equation for n and a, thereby getting an
in®nite number of possibilities for both. It is not hard to check that all these directions are very close to that
given by Eq. (6.28a), when n is very large, and that a is very large when n is. De®ne ja by

an � jaea ) j1 � 2j2 � j3 � 0: �6:35�
As an example of numbers obtained for n small, I calculate that

n � 0) j3=j1 � 0:5005; �6:36�
also quite close to the starting value of 1/2. From this, it is pretty clear that, while di�erent values of n will
give di�erent values of n, they are not very di�erent, although the values of a can di�er considerably. Of
course, values of these depend on values of a; b and c, which are subject to some experimental error,
changes of temperature, etc. There is no obvious reason why the relevant combinations of these should be
rational numbers, so K1 is regarded as irrational. From this exercise, it does seem pretty clear, on the face of
it, that workers have done calculations somewhat similar to mine, to draw their conclusions about K1 being
irrational. Given these calculations, I seriously doubt that experimentalists can get X-ray data su�ciently
accurate to pick out a particular value of n. However, I would be happy to be proven wrong about this.
Even so, I would like to see some theoretical reason for picking one. Earlier, I noted that, for this mode, in
particular, the Cauchy±Born rule fails to apply, so we cannot expect to get a reliable determination of n, by
using shear data. Another theoretical possibility is to try to determine it so that the twin is contained in
some Pitteri neighborhood. This involves satisfying three equations like Eq. (3.33), the di�erence being that
the m1 used there is replaced by

m2 � k ÿ db
a � 2satbk ) m2

2 � 1; det m2 � 1: �6:37�
However, it is not hard to show that there are no lattice vectors satisfying these conditions for any per-
missible values of the sa, so

these twins cannot be included in any Pitteri neighborhood: �6:38�
At least for the present, I do not see another possibility that is easy to assess. However, there is another

speculative line of thought that seems to me to be promising enough to mention, although it would take
some hard work to ®rm it up and assess it.

Now, I return to the speculation. First, Cahn (1953), in his work on determining twinning elements for a-
uranium, presented a number of photographs of patterns of twins he observed, including some involving
the modes considered in our examples. Mostly, these involve di�erently oriented twins. For example, he
found that ``f1�72g'' twins can intersect each other, also that they can intersect f130g twins. So, these are
among the patterns that the X-ray theory should treat. I have not tried to collect other information of this
kind that is available, but this is enough to supply some motivation for the discussion.
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Now, in common practices, I observe an intuitive prejudice concerning analyses of twins. Roughly, it is a
common notion that interactions involving di�erent energy wells will involve only wells which are very close
to each other. In one way or another, various workers use this idea, rather successfully, on the whole. In our
®rst example, we used two versions, one being the minimum shear assumption. The other is more of a
topological nature. With twins that can be included in a neighborhood, it has become routine to use this to
locate neighboring wells, this being the second version used in the ®rst example. Other variations are used,
in dealing with deformation. Mathematically, it is at best unclear that such neighborhoods always include
the wells closest to one, and it would not surprise me if someone produced a counterexample, with a
reasonable interpretation of ``closest''. Pragmatically, it has been a successful selection criterion, for cases to
which it applies.

For the f1 30g twins, we used this rule to get the three variants discussed before and experience suggests
that the corresponding wells are likely to su�ce, to describe their role in patterns of twins. Clearly, this idea
is of no help, in deciding which wells to use, to try to analyze patterns involving the ``f1�72g'' twins, in
particular, and we know that these can also involve f130g twins. Roughly, what the indicated thoughts
suggest to me is selecting the ``f1�72g'' wells closest to those of the f130g variants, and rejecting the rest. As
a general strategy, I like this way of getting rid of most or all of the ambiguities associated with that ar-
bitrary integer, etc. The di�culty is that it is not obvious exactly how best to accomplish this, or to forecast
how well it might do, in delivering wells needed for satisfactory analyses. Let us think a bit more about this,
in general terms. For one variant, we did determine that in®nite set of solutions of the twinning equations.
Using Eqs. (2.14) and (6.1a,b,c), one can calculate all possible shifts, to complete these solutions. We should
also determine the corresponding sets for the other two variants. This is routine, a matter of applying
transformations to the ®rst set. If we like, we can take orbits of these under SO(3). At present, I have not
®rmly decided whether to do so, but I lean toward it. Either way, one should take each f130g variant, look
at the entire list of ``f1�72g'' possibilities, and pick out the one(s) closest to it. Here, we have another
uncertainty, ``closest'' being subject to interpretation. There are various possible norms that could be used
for this. For reasons not yet very clear to me, I think that some are better than others, so I am not ready to
make a de®nite proposal for this. I do not mean to exclude the possibility that some more topological
interpretation might be best, but I have no concrete suggestions for this. Obviously, one needs to make
de®nite decisions about these uncertainties, and determine the results. I believe that it should be possible to
do so, but the best way to con®rm this is to produce the results. So, my proposal is rather vague and
speculative. Granted a successful outcome, one should take the orbit of the selected descriptions under
SO(3).

Suppose that we have done all this. Then, we have a collection of energy wells, to be used in trying to
analyze patterns involving one or both of these modes. There is no guarantee that the procedure will deliver
the wells needed to properly analyze the observed patterns, so this needs to be explored. For this reason
also, my proposal is speculative. The common practice of using only the wells included in a Pitteri
neighborhood is subject to the same reservation but, in practice, it has worked well, giving us some reason
to be optimistic about this. For whatever it is worth, Frank (1953) used a somewhat similar idea, to
compare twins in a-uranium with those in zinc. If the procedure works well for these modes, one could try
including other observed modes, in a similar way. So, with some luck, this could become a useful partial
theory of twins in a-uranium. If I had an idea which I thought would be more likely to be successful than
this, I would have discussed it instead. For this, it seems necessary to assume that û is invariant under an
in®nite group, unless someone ®nds a clever trick to evade this. However, for typical analyses, it is not
necessary to specify this function, although one is likely to need it in the future. As I have not found a good
way of selecting that arbitrary integer etc., this is, for me, a problem not yet solved. For this reason, I have
referred to my analysis of these twins as being only a partial one.

Whether or not the suggested procedure is successful, I have barely scratched the surface in constructing
a useful theory of twinning in this material. Here, my aim is more to illustrate the issues arising in realistic
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cases, and to describe the tools we have for dealing with X-ray observations of twins. The two quite dif-
ferent examples seem to me to be good for this. I think it worth work out additional realistic examples, to
better illustrate all of the kinds of di�culties that do arise, and need to be dealt with, perhaps by creating
other kinds of tools.

For twins with K1 irrational, it is not immediately obvious how this should be de®ned. As best as I can
estimate the consensus of opinion about this, it is to use ratios of components of n. So, for our example, we
might use

K1 � f1; j2=j1; j3=j1g: �6:39�
A di�erent kind of example of a generalized type II twin occurs in orthoniobate. These are transfor-

mation twins, associated with a second-order phase transition. I have not studied the literature on these,
except that I did look carefully at the analysis of observed microstructures by Jian and James (1997), which
agrees well with the experimental data. This alone is rather good evidence that these are neither of type I
nor of type II, with K1 and g1 both being irrational. This is the ®rst such twin to be observed, as far as I
know.

This is one of those nice cases where the Cauchy±Born rule applies and the twins can be included in a
neighborhood. The former is expected, this being a shape-memory material. The latter is rather obvious
from the fact that these twins are associated with a second-order phase transition. Then, it is not really
necessary to use the X-ray theory, thermoelasticity theory being adequate for analyzing these. This is what
Jian and James (1997) do. Of course, this theory ignores the shifts. I do not really doubt that they are
arranged properly and, otherwise, these twins do qualify as generalized type II twins that are not of type II.
I have not tried analyzing these, using the X-ray theory, but would expect to encounter ambiguities similar
to those encountered in the last example, associated with lattice invariant shears. It might be worthwhile to
do so, to understand how the nice features in this case enable one to eliminate these. Or, perhaps, they are
not completely eliminated, but leave us with inconsequential ambiguities.

There is the common idea that, if K1 and g1 are rational, they can be treated as either type I or type II. As
I explained before, this is, essentially, a tautology, if you recognize how it is decided that they are rational.
This seems to cover the observations of generalized type I twins, but I have not studied the mathematical
possibility of including others, for which K1 should be judged to be rational, by similar reasoning. I should
say that, in practice, some workers say that calling K1 irrational really means that one needs rather large
integers ka to match the measurements, within experimental error. Apart from the fact that this seems to
require some subjective judgment, and makes the theoretical distinction fuzzy, I do not really object to this.
Perhaps, some of them will not like my explanation of this. I believe that the last a-uranium example is
fairly typical, illustrating the kinds of issues which will arise, when one tries to analyze type II twins with K1

irrational. Another such twin of this kind, also observed in a-uranium, involves an additional ambiguity.
With g1 � h512i, it is either the ``f197g'' or the ``f17�6g'' mode. Some writers use one, some the other, and
a few persons mention both. Of course, rational approximations are not unique, but these seem to me not
to be very close to each other. Some workers mention that the rational approximation for the ``f1�72g''
mode is unusually good. I have not tried analyzing these, so am not sure what problems are created by the
added ambiguity. Generally, some twins of this kind might be simpler than others, because they are
contained in a Pitteri neighborhood and/or conform to the Cauchy±Born rule, for example.

Finally, it is fair to ask whether there are things called twins which are not in either of my classes. I know
of no observations of mechanical twins of this kind, but there are some such examples of growth twins, as is
rather clear from the discussion by Zanzotto (1988). For example, he mentions cases of growth twins in
some materials, for example alum, which do not even meet what I took as minimal requirements: they
involve inequivalent crystallographic planes on the two sides of the twin plane. Thus, they cannot be listed
in the usual way, in twinning tables. Frankly, I do not see how to phrase a general de®nition of a twin which
includes such cases and also excludes the grain boundaries in polycrystals, for example, and rather di�erent
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kinds of theory are used for the latter. So, I would not call these twins, but I seem to be alone in this. I do
not really object to having a third category of twins, allowing for any not in either of my classes. It is only
that less theory is available for these. It would be nice for theorists if workers would agree on a general
de®nition of twins, but I am not very optimistic about this.

This covers my thoughts on what might be viewed as elementary twinning analyses, according to the X-
ray theory. Hopefully, this is enough to make clear how well these ®t common practices, and to give some
idea of what the X-ray theory can and cannot do. For nonspecialists, I have tried to point out practices
which seem to me to be somewhat confusing.
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